3.401 \(\int \frac{x^2 \sqrt{c+d x^3}}{(8 c-d x^3)^2} \, dx\)

Optimal. Leaf size=64 \[ \frac{\sqrt{c+d x^3}}{3 d \left (8 c-d x^3\right )}-\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{9 \sqrt{c} d} \]

[Out]

Sqrt[c + d*x^3]/(3*d*(8*c - d*x^3)) - ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])]/(9*Sqrt[c]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0493253, antiderivative size = 64, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.148, Rules used = {444, 47, 63, 206} \[ \frac{\sqrt{c+d x^3}}{3 d \left (8 c-d x^3\right )}-\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{9 \sqrt{c} d} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*Sqrt[c + d*x^3])/(8*c - d*x^3)^2,x]

[Out]

Sqrt[c + d*x^3]/(3*d*(8*c - d*x^3)) - ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])]/(9*Sqrt[c]*d)

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^2 \sqrt{c+d x^3}}{\left (8 c-d x^3\right )^2} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{\sqrt{c+d x}}{(8 c-d x)^2} \, dx,x,x^3\right )\\ &=\frac{\sqrt{c+d x^3}}{3 d \left (8 c-d x^3\right )}-\frac{1}{6} \operatorname{Subst}\left (\int \frac{1}{(8 c-d x) \sqrt{c+d x}} \, dx,x,x^3\right )\\ &=\frac{\sqrt{c+d x^3}}{3 d \left (8 c-d x^3\right )}-\frac{\operatorname{Subst}\left (\int \frac{1}{9 c-x^2} \, dx,x,\sqrt{c+d x^3}\right )}{3 d}\\ &=\frac{\sqrt{c+d x^3}}{3 d \left (8 c-d x^3\right )}-\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{9 \sqrt{c} d}\\ \end{align*}

Mathematica [A]  time = 0.0553801, size = 61, normalized size = 0.95 \[ \frac{\frac{3 \sqrt{c+d x^3}}{8 c-d x^3}-\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{\sqrt{c}}}{9 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^2*Sqrt[c + d*x^3])/(8*c - d*x^3)^2,x]

[Out]

((3*Sqrt[c + d*x^3])/(8*c - d*x^3) - ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])]/Sqrt[c])/(9*d)

________________________________________________________________________________________

Maple [C]  time = 0.007, size = 439, normalized size = 6.9 \begin{align*} -{\frac{1}{3\,d \left ( d{x}^{3}-8\,c \right ) }\sqrt{d{x}^{3}+c}}+{\frac{{\frac{i}{54}}\sqrt{2}}{{d}^{3}c}\sum _{{\it \_alpha}={\it RootOf} \left ({{\it \_Z}}^{3}d-8\,c \right ) }{\sqrt [3]{-{d}^{2}c}\sqrt{{{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( -i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}\sqrt{{d \left ( x-{\frac{1}{d}\sqrt [3]{-{d}^{2}c}} \right ) \left ( -3\,\sqrt [3]{-{d}^{2}c}+i\sqrt{3}\sqrt [3]{-{d}^{2}c} \right ) ^{-1}}}\sqrt{{-{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}} \left ( i\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,\sqrt{3}d-i\sqrt{3} \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}+2\,{{\it \_alpha}}^{2}{d}^{2}-\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,d- \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}} \right ){\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{{i\sqrt{3}d \left ( x+{\frac{1}{2\,d}\sqrt [3]{-{d}^{2}c}}-{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}},-{\frac{1}{18\,cd} \left ( 2\,i\sqrt [3]{-{d}^{2}c}\sqrt{3}{{\it \_alpha}}^{2}d-i \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}\sqrt{3}{\it \_alpha}+i\sqrt{3}cd-3\, \left ( -{d}^{2}c \right ) ^{2/3}{\it \_alpha}-3\,cd \right ) },\sqrt{{\frac{i\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c} \left ( -{\frac{3}{2\,d}\sqrt [3]{-{d}^{2}c}}+{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{d{x}^{3}+c}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(d*x^3+c)^(1/2)/(-d*x^3+8*c)^2,x)

[Out]

-1/3/d*(d*x^3+c)^(1/2)/(d*x^3-8*c)+1/54*I/d^3/c*2^(1/2)*sum((-d^2*c)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-d^2
*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(1/3)+I*3^(1/2)*(-d^2*
c)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)/(d*x^3+c)
^(1/2)*(I*(-d^2*c)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c)^(1/3)*_alpha*d-(-d^
2*c)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1/2)*d/(-d^2*
c)^(1/3))^(1/2),-1/18/d*(2*I*(-d^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3
*(-d^2*c)^(2/3)*_alpha-3*c*d)/c,(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c)^(1
/3)))^(1/2)),_alpha=RootOf(_Z^3*d-8*c))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(d*x^3+c)^(1/2)/(-d*x^3+8*c)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.80881, size = 342, normalized size = 5.34 \begin{align*} \left [\frac{{\left (d x^{3} - 8 \, c\right )} \sqrt{c} \log \left (\frac{d x^{3} - 6 \, \sqrt{d x^{3} + c} \sqrt{c} + 10 \, c}{d x^{3} - 8 \, c}\right ) - 6 \, \sqrt{d x^{3} + c} c}{18 \,{\left (c d^{2} x^{3} - 8 \, c^{2} d\right )}}, \frac{{\left (d x^{3} - 8 \, c\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-c}}{3 \, c}\right ) - 3 \, \sqrt{d x^{3} + c} c}{9 \,{\left (c d^{2} x^{3} - 8 \, c^{2} d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(d*x^3+c)^(1/2)/(-d*x^3+8*c)^2,x, algorithm="fricas")

[Out]

[1/18*((d*x^3 - 8*c)*sqrt(c)*log((d*x^3 - 6*sqrt(d*x^3 + c)*sqrt(c) + 10*c)/(d*x^3 - 8*c)) - 6*sqrt(d*x^3 + c)
*c)/(c*d^2*x^3 - 8*c^2*d), 1/9*((d*x^3 - 8*c)*sqrt(-c)*arctan(1/3*sqrt(d*x^3 + c)*sqrt(-c)/c) - 3*sqrt(d*x^3 +
 c)*c)/(c*d^2*x^3 - 8*c^2*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2} \sqrt{c + d x^{3}}}{\left (- 8 c + d x^{3}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(d*x**3+c)**(1/2)/(-d*x**3+8*c)**2,x)

[Out]

Integral(x**2*sqrt(c + d*x**3)/(-8*c + d*x**3)**2, x)

________________________________________________________________________________________

Giac [A]  time = 1.0921, size = 72, normalized size = 1.12 \begin{align*} \frac{\arctan \left (\frac{\sqrt{d x^{3} + c}}{3 \, \sqrt{-c}}\right )}{9 \, \sqrt{-c} d} - \frac{\sqrt{d x^{3} + c}}{3 \,{\left (d x^{3} - 8 \, c\right )} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(d*x^3+c)^(1/2)/(-d*x^3+8*c)^2,x, algorithm="giac")

[Out]

1/9*arctan(1/3*sqrt(d*x^3 + c)/sqrt(-c))/(sqrt(-c)*d) - 1/3*sqrt(d*x^3 + c)/((d*x^3 - 8*c)*d)